3D-Printing Basics

Contents

- I. Online 3D Model Databases
- II. Designing your own Models
- III. 3D File Types
- IV. Cura & Octopi Preparing your model for Printing
- V. Introduction to Printing materials
- VI. Re-Calibrating your Printer

Finding projects and files online

- Thingiverse (<u>https://www.thingiverse.com/</u>)
 - Toys, Replacement parts, Deco, fan articles, table top figures...
 - Single models
 - Larger Projects with instructions
 - Usually STL files, sometimes also editable (program specific files)
- The Models Resource (<u>https://www.models-resource.com/</u>)
 - Video Game models
 - Copy Right Questionable

Finding projects and files online

- Happy 3D (<u>https://www.happy3d.fr/en/</u>)
 - by French Electronic company "Boulanger" (also models for other brands)
 - Replacement parts only
 - Original CAD Data
 - Community uploads checked for being printable
- MyMiniaFactory (<u>https://www.myminifactory.com/</u>)
 - Community based
 - Curated
 - Similar to Thingiverse

MyMiniFactory

Designing your own model

- Why?
 - Can't find it online
 - Custom parts needed for own Project
- How long?
 - Depends on
 - Complexity
 - Your experience
 - 10 min- multiple hours
 - Plan redoing your projects

3D Design Programs

Technical Design Artistic Design Code based Sketching and extruding DS Mechanical **OpenSCAD** SCULPTRIS K **AUTODESK®** blender FUSION 360^m

And many more....

OpenSCAD

- Open source
- Works on all OS
- Requires some programming skills
 - Cheat Sheet: <u>http://www.openscad.org/cheatsheet/7</u>

OpenSCAD

Sculptris

- Used for making models which are hard to sketch using geometrical forms
- Principle: starting with a lump of clay \rightarrow moulding it, pulling it, etc...
 - Requires some artistic skills and practice with the program
- Digital Art and Model Creation
- Few personal experience yet
- Download: http://pixologic.com/sculptris/

Design Spark Mechanical

- Commercial but free for private use
- Windows Only (No Mac / Linux support)
- Requires Registration
 - Feel free to supply it with your spam email
 - and fake infos (e.g. <u>https://www.telefonpaul.de/</u>)
- Download: (<u>https://www.rs-online.com/designspark/mechanical-software</u>)
- Very Similar to Autodesk Fusion 360
- Principle:
 - Sketch a 2D Plane
 - pull (=extrude) it in z-Dimesion
 - Cut unwanted pieces out

Autodesk Fusion 360

- Professional Program
- Support for Mac and Windows (No Linux support)
- Expensive License
 - 3 year free student license
 - Here: https://www.autodesk.de/products/fusion-360/students-teachers-educators#
- Same Principle as DS Mechanical
- Advantages:
 - Improved interface
 - Contains standardized models (e.g. threaded holes according to ISO standard)
 - Includes G-Code conversion function

AUTODESK® FUSION 360

Tinkercad

- Free Online Software
- Allrounder with multiple approaches
 - Dragging & Dropping Froms
 - Codeblock based
 - Like OpenSCAD but prepared Codeblocks as jigsaw pieces

Meshmixer

- Free Online Software
- Suited for sculpting and (to a slightly lesser extent) technical designs
- Easy to learn
- Wide array of features

3D File Types

- Program specific types
 - OpenSCAD_File
 - RSDOC
 - ...

 \rightarrow only usable with the design program/ programs by the same developer

• STL

- Surface of the model
- Divided into triangles \rightarrow no perfect circles possible
- Used as an exchange format

3D- File Types

• STEP (<u>Standard for the Exchange of Product Data</u>)

- Read only
- Common exchange format

• G-Code

- Developed 1950 at the MIT (Massachusetts Institute of Technology)
- Encodes Instructions for computer controlled tools (e.g. x,y,z-movement)
- ightarrow File type used by the 3D Printer

Cura

- Converts STL Files into G-Code (= instructions for the Printer)
- Allows to choose settings for the printing process
 - Scaling, rotating
 - Extruder and printing bed temperature
 - Infill
 - Adhesion Plates
 - Support Structures
 - ...

C Ultimaker Cura

File Edit View Settings Extensions Marketplace Preferences Help

50.4 x 42.0 x 50.0 mm

Cura – Important Print Settings

Cura-Important Settings: Shell + Infill

🕅 Infill			~
Infill Density	ゥ	12	%
Infil Line Distance		6.6667	mm
Infil Pattern		Grid	~
Shell			~
Wall Thickness		0.8	mm
Wall Line Count		2	
	— tł	he cake r ne above ayer viev	-

- Outer Walls serve as main stability source
- 2-3 Walls usually suffice
- Infill density >10% suffices most of time
- More settings for both options
 - Either unimportant or are adjusted after changing the shown settings

Cura – Important Settings: Support & Build plate

• Support:

- needed by overhanging structures > 45°
- Standard settings pretty ok
- Leave checked unless stated in model description
- Build Plate:
 - Generates adhesion enhancing plate around/ under the model
 - Recommended for ABS
 - Raft is the strongest but biggest plate
- Both can be vied in "layer view"

Support			~
Generate Support	8° 5	~	
Support Placement	o	Everywhere	~
Support Overhang Angle	o	50	0
Support Pattern	8 N	Grid	~
Support Density	o	15	%
* Build Plate Adhesion			~
* Build Plate Adhesion Build Plate Adhesion Type	8 D	None	~ ~
•	8 D	None Skirt	~
Build Plate Adhesion Type	8 D		~
Build Plate Adhesion Type	8 D	Skirt	~

Cura - finishing your file

- Check
 - Printing time
 - Printing weight
- Printing costs @ Krautspace
 - 0.50€ per print
 - Adittionally 0.04€/g
- Pres "Save to File" and name it
 - Include your (nick-)name, material, what you printed, weight, time
 - ex: GlaDos_PLA_cake_11g_2h23min.gcode
- Pay, Upload, Print

PI3_Not_a_lie 🖋

02h 23min 3.60m / ~ 11g

Save to File

Reducing Print Costs

- Reduce infill percentage
 - Just add an extra outer layer
- Make your print smaller
- Avoid unnecessary support
- Avoid printing errors
 - Check Printer Calibration
 - Stay till the printer has finished the first layer (or ask someone to watch it for you)
 - Most prints go awry in the first few layers
 - Check back every few hours for longer prints (Telegram bot)

🖄 Infill			~
Infill Density	ら	12	%
Infil Line Distance		6.6667	mm
Infill Pattern		Grid	~
🕅 Shell			~
Wall Thickness		0.8	mm
Wall Line Count		2	

Choosing the right material

- High number of specialised Filaments
- Different physical and chemical properties
- \rightarrow Different models require different Polymers
 - \rightarrow Settings and Handling have to be adjusted to the plastic used

(probably)

Common Filament Types

- Tested by us
 - PLA \rightarrow Cheap biodegradable allrounder material
 - ABS \rightarrow tough, heat resistant material
 - PET(G) \rightarrow best known as everyday plastic for food safe containers
- Interesting but yet untested
 - TPU \rightarrow similar to rubber
 - Conductive PLA \rightarrow low voltage circuits
 - Many many more ...

PLA (Polylactic Acid)

- = polymerized fermented maize starch
- → Biodegradable, environment friendly
- +Easy to print
 - Low printing temperature
 - Almost no warping
 - No adhesion plate/ glue necessary
- Brittle
- low Glass transition temperature (60°C)
- Low chemical resistance

ABS (Acrylonitrile butadiene styrene)

- =
- + tough material
- + high glass transition temperature
- + can be smoothed with acetone vapor
- + hydrolysis resistant
- Easily warps (up to 8%)
- \rightarrow Ideal for small, fine objects, terrible for larger ones

Adhesion: diluted wood glue + build plate

PET(G) (Polyethylene terephthalate)

- "G" stands for glycolyzed
- = commonly used, foodsafe polymer
- + low warping \rightarrow used for bigger prints
- + high melting()/ glass transition point ()+almost no warping
- small scale printing artefacts
- Small details and support often undistinguishable
- Adhesion: diluted wood glue

(Re)calibrating the printer

- Use Octoprint to Home the printer on all axes
 - Make sure the marked lines at both threaded rods are at 6'o clock (always)
 - Put a paper sheet between plate and extruder then try to move it around (after failed prints)
 - →If its possible to move it with some resistance the its well calibrated
 - Check all edges and corners, make sure it doesn't get harder/ easier
 - Adjust using a screw driver on the plates corner screws

